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Abstract: Design of complex systems demands exploration of high-dimensional design spaces due to competing design 

goals and numerous design parameters. Manual tradeoff studies in hyperspaces are laborious and hence, Artificial 

Intelligence offers a solution. This paper introduces a Constrained Multi-Objective Design Optimization approach in 

Systems Engineering using Artificial Intelligence and evaluates this method through an automotive case study. 

Therefore, an Active Learning algorithm is presented to automate identifying pareto fronts by inferring simulation 

models as substitution for learning data. 

Keywords: Artificial Intelligence (AI), Machine Learning (ML), Systems Engineering (SE), Design Optimization, 
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1 Problem Statement & Research Scope 

System design and optimization in automotive Systems Engineering (SE) is heavily linked to well-established processes 

and approaches. A specific approach involves the usage of simulations, which are based on modeling of physical effect 

chains, to evaluate different architectural alternatives as well as to optimize design parameters. Various Machine Learning 

(ML) techniques enable the acceleration and significant improvement of simulation-based design optimization. To explore 

the potential of ML, several use cases are examined for the application of ML algorithms to specific simulation tasks in 

vehicle design. These investigations are carried out within the context of publicly funded research projects by the authors 

of this publication and associated industry partners. In this publication, the use case of solving Constrained Multi-Objective 

Design Optimization problems is closely investigated by implementing a prototype for an automotive case study 

considering early phases of SE. Figure 1 shows the localization of the research scope in a typical V-Model (left side) as 

well as the link to the standardized processes for testing (right side) according to the International Software Testing 

Qualifications Board (ISTQB), whereby the process steps are tailored to fit the research scope regarding simulation. 

 

Figure 1. V-Model for Systems Engineering according to Eigner (Eigner et al., 2020) with localization of research scope (left) 

and testing process steps according to the International Software Testing Qualifications Board tailored for simulation (right). 

Following research questions (RQ) are answered by implementing an Active Learning (AL) approach for the case study 

and exploring the potential of AI, specifically ML, to solve Multi-Objective Optimization (MOO) problems: 

- RQ 1: Which support can AI provide for the optimization of competing system properties by automated design 

space exploration for complex and non-linear systems? 
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- RQ 2: How can AI and design knowledge from simulation models be combined to solve Constrained Multi-

Objective Design Optimization problems in Systems Engineering applications? 

Since a special class of MOOs is considered, this leaded to selection of the AL approach prior to this publication. As 

mentioned in RQ 2, a class of design problems is investigated, which requires fulfilment of design constraints and leads 

to the need to integrate these into the ML algorithm. AL enables native integration of constraints (Khatamsaz et al., 2023) 

and further ML algorithms, precisely Evolutionary Algorithms (EAs) as well as Soft and Asynchronous Advantage Actor-

Critic algorithms, were investigated and evaluated beforehand. The presentation of the latter results is not part of this 

publication and comparison will be shown in a later publication, since currently no suitable metrics for comparison of 

different types of ML algorithms in real world applications exists. This is still ongoing research work of the authors. 

Additionally, it is to be considered that the MOO case study (section 3) should be formulated as an inverse design 

optimization problem. Therefore, it is assumed that competing desired system properties are given, and specified values 

of design parameters should be found, which optimizes design tradeoffs according to the given system properties. Since a 

complex system is optimized in the case study, the MOO problem can be described in a hyperdimensional design space, 

which means that more than three design parameters should be determined. Additional to the research scoping by 

RQ 1/RQ 2, the following statements (STs) describe characteristics of the object of investigation more precisely: 

- ST 1: The design problem considered is a MOO problem formulated as inverse design optimization problem for which 

four design goals and five design parameters will be given. 

- ST 2: To solve the optimization problem the hyperdimensional design space should be automatically explored (design 

space exploration) by AL, taking (simplified) design constraints into account. 

- ST 3: Design goals are competing in MOO problems, meaning that there is no single global optimum and instead 

parts of the pareto front will be described by the solutions found by the AI algorithm. 

- ST 4: Simulation based on mathematical-physical behavior models should be used to evaluate the influence of 

variation of design parameters on desired system properties and to generate required data for application of ML. 

2 Starting Point & State-of-the-Art 

To clarify the current landscape of ML approaches solving MOOs, a survey of existing papers was conducted, mainly 

based on keywords related to design space exploration, ML, MOO and AL in concrete applications. It is important to note, 

that only the most important findings with relation to the problem statement in section 1 are presented. Consideration of 

general applications of AI in design as well as a broad overview of approaches to solve MOOs go beyond the scope of this 

paper. Furthermore, key terms related to ML algorithms are briefly given in this section. 

The challenges addressed by MOOs are diverse and lead to different approaches to meet specific real world problem 

requirements. To narrow down relevant algorithms, two main key factors should be considered. One key distinguishing 

factor of different MOO approaches lies in types of pareto fronts that these methods can uncover, whereby a distinction is 

made between regular and irregular pareto fronts. Regular pareto fronts are always continuous, implying the design space 

to be continuous. Irregular pareto fronts are not necessarily continuous as for example in discrete design spaces spanned 

by discrete design parameters. The second distinguishing factor of MOO approaches is the classification of the leading 

concept to find optimal solutions within the design space. Mainly two types of MOO approaches are considered, namely 

so-called simulated annealing approaches and approaches based on EAs. For both classes of MOO approaches an 

exhaustive number of algorithms were developed over the last two decades and an overview can be taken from current 

publications (Saini and Saha, 2021) or standard literature (Russell and Norvig, 2021). 

In relation to the investigated case study of this contribution, especially MOO approaches considering a discrete pareto 

front and based on EAs seem best suitable. EAs like NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Deb et al., 

2002) can identify multiple optimal solutions of the pareto front in one run and do not get stuck in local optima in early 

runs. This is important since design goals are competing, meaning there is not a single globally optimal design and instead 

the task of optimization can either be described as finding multiple optimal tradeoffs within the design space or finding an 

optimum fulfilling a predefined cost function. In the latter case it might be difficult to formulate the necessary cost function 

in such a way that, e.g. the weighing of the competing design goals, leads to a suitable solution. Furthermore, MOO 

approaches based on EAs seem suitable since they have the capability to approximate solutions in hyperdimensional design 

spaces while striking a balance between runtime and solution accuracy (Chugh et al., 2019). Still, main drawbacks of EAs 

are the missing native consideration of design constraints while exploring the design space and the inability to consider 

new insights, either from human feedback or new data at runtime of the optimization. While the latter requirement can be 

fulfilled by Reinforcement Learning (RL) approaches as well and was investigated on the example of the Soft Actor-Critic 

(SAC) algorithm and Asynchronous Advantage Actor-Critic (A3C) by the authors, consideration of design constraints by 

native design of the algorithm is not possible in the same way as with AL algorithms.  
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AL can briefly be described as ML approach or paradigm in which not a fixed dataset is considered, but rather the algorithm 

requests specific data points to improve its performance. Understanding the full potential of AL for the case study involves 

recognizing that the MOO problem and AL architecture presented in this paper utilizes design knowledge captured in a 

simulation model, as addressed by RQ 2. Therefore, the key idea using AL is to enable the ML algorithm to actively 

prompt the simulation model and extract the most valuable design knowledge for the optimization process. This can be 

considered a more efficient way instead of relying on RL algorithms or going with MOO approaches based on EAs. 

Therefore, this paper considers the usage of AL, which is novel for the concrete type of MOO in respect to the case study. 

Classically, AL is used in ML applications related to classification and regression tasks as well as natural language 

processing. Further details for AL in concrete applications can be found in publications (Cevik et al., 2015). 

Additionally, there is a recognizable trend towards using methods based on Artificial Neural Networks (ANN) or EAs in 

engineering. For example, Hong and Le (Hong and Le, 2023) use an ANN-based method for the optimized design of 

doubly reinforced rectangular concrete beams based on multi-objective functions. Ebbs-Picken et al. (Ebbs-Picken et al., 

2023) point out that the most advanced methods for MOOs of battery thermal management system design involves the use 

of genetic algorithms. Caruana and Lou (Caruana and Lou, 2021) show that methods based on swarm intelligence, which 

count as evolutionary methods, offer possibilities for solving various MOO problems. There are also some further 

applications using ML for design space exploration, of which the most important are briefly outlined below. 

- Search and optimization of the position of FPGAs in E/E development (Murray and Betz, 2019) 

- Disease classification and tradeoffs to reduce medication side effects (Yu et al., 2019) 

- Solving inverse optimization problems to optimize complex optical systems (Wankerl et al., 2020) 

- Reduction of the design space through clustering of design parameters (Qiu et al., 2016) 

To distinguish this contribution from the mentioned work, it is important to note that most of them focus on design space 

exploration that either does not optimize competing parameters (no MOO), requires pre-preparation of the design space, 

or does not yield specific combinations of design parameters as output. In further publications, the use of EAs rather than 

AL has mostly been considered or inverse optimization problems have not been solved – meaning the specification of 

desired system properties and the search for design parameters that optimize these system properties was not examined. 

In summary, the state-of-the-art misses to utilizing AL to solve design problems depicted by section 1 of this contribution. 

3 Considered Case Study 

The case study focuses on system design and optimization with computer simulations in an automotive development 

process. Specifically, the study aims to support the parametrization of key components in vehicle design through tradeoff 

studies to optimize competing system properties. Thus, the case study is focused on vehicle conception in SE and not the 

optimization of individual components. This requires considering cross-component causal effect chains, leading to 

emergent behavior not solely predictable based on the component behavior according to the theory of complex systems 

(Thurner et al., 2018). Furthermore, not only behavior of one engineering domain, as mechanical or electrical engineering, 

should be considered, but also software-based behavior. To generate data and enable the AL algorithm to actively query 

feedback (see section 4) to learn and adapt to the system’s behavior, a simulation model is set up. For reasons of publication 

the simulation model depicts a classical car with internal combustion engine, but the concepts are transferable to any kind 

of vehicle design. The simulation model is also required not only for the AL approach but also because the vehicle's 

behavior can’t be captured by a single formula or closed system of equations. Hence, the system's behavior, as described 

by a longitudinal vehicle behavior model, is non-linear and not easily optimized without computer simulations. The 

utilization of simulations for optimizing design parameters often follows the scheme depicted on the right side of Figure 2. 

 

Figure 2. Process of design optimization through simulation according to Bleisinger et al. (Bleisinger et al., 2022) and 

representation of the scope of Machine Learning based automation for iterative parameter variation and simulation.  
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The depicted process of the simulation-based optimization with the steps 1 to 6 in Figure 2 is a more detailed view on the 

virtual testing approach already presented in Figure 1 (right side). Therefore, this can be understood as specialization of 

the generic testing process defined by the International Software Testing Qualifications Board by tailoring these for virtual 

testing by computer simulations. The diagram illustrates that, for a specific load cycle (step 1) and selected design 

parameters (step 2), simulations are conducted (step 3) to determine potential system properties. The system properties are 

typically validated manually by simulation engineers (step 4). If the design goals are not met or optimization is still 

possible, the design parameters are varied (step 5) before another iterative loop through steps 1 to 5 is carried out with the 

new design parameters and another evaluation of the design goals is conducted. The optimization is terminated if required 

design goals are met (step 6). The main task in conception of the ML algorithm is to automize steps 2 to 6. This means the 

whole process of design optimization is considered in the case study and only the load cycles are stable through the 

iterations for optimization after the initial setup. At this point, it should be mentioned that the main load cycle of the 

longitudinal vehicle model is represented by measurement data (Figure 2, top left) from a roller test stand, collected by 

one of the authors in a laboratory and emulating the New European Driving Cycle (NEDC). Furthermore, a second load 

cycle is needed to generate simulated output data according to the design goals in Table 1. The second load cycle is 

therefore a full throttle scenario at maximum acceleration of the simulated vehicle. 

The simulation model was built in Matlab/Simulink, integrated in the AL architecture according to Figure 4 and receives 

as input/stimuli the two mentioned load cycles as well as five design parameters. In the performed case study, energy 

consumption and different indicators for driving performance are considered as design goals. The input parameters for the 

simulation, notably representing the design parameters in the MOO problem, include the axle ratio, tire rolling radius 

(reflecting tire size) and the gear ratios of gears three to five of the step transmission. In summary, the following results of 

the simulation model should be considered as system properties, along with the following design parameters: 

Table 1. Summary of design parameters and design goals (desired system properties) for the Multi-Objective Optimization problem. 

Design 

Parameter 
Description  

Design 

Goals 
Description 

𝑖𝑎𝑥 ratio of the axle transmission  𝑓𝑐 fuel consumption for load cycle 

𝑟𝑡𝑟 rolling radius of the tires  𝑒𝑙𝑔3 elasticity value in gear 3 

𝑖𝑔3 ratio gear 3 of step transmission  𝑒𝑙𝑔4 elasticity value in gear 4 

𝑖𝑔4 ratio gear 4 of step transmission  𝑒𝑙𝑔5 elasticity value in gear 5 

𝑖𝑔5 ratio gear 5 of step transmission    

The objective is to optimize the four system properties according to a specified scoring function and simultaneously 

satisfying formulated design constraints. One of the four system properties considered as design goals in the MOO is the 

overall fuel consumption required by the vehicle concept to run through the defined load cycle, represented by the speed 

profile in Figure 2 (top left). Additionally, three driving performance indicators are considered as design goals, 

specifically, the elasticity values for full-throttle acceleration from 60km/h to 100km/h. The elasticity values are given in 

seconds necessary for acceleration and are calculated using the full-throttle load cycle in the simulation model. To simplify 

the design constraints for explainability in the case study, fixed value ranges for all design parameters are used as 

constraints, but the approach presented is transferable to more complex design constraints, e.g. based on mechanical 

boundaries for construction and geometric integrity of cogwheels for the step transmission. To ensure the readers 

overview, the capabilities of the Matlab/Simulink simulation model is described as input/output relation (blackbox) in 

Figure 3 (right side) and a depiction of the main idea for automation of steps 2 to 6 by AL (Figure 3, left side) is provided. 

For further details on the simulation of energy consumption and performance indicators, the authors refer the interested 

reader to additional literature (Knöbl, 2023). 

 

Figure 3. Depiction of automation of iterative parameter variation, simulation, evaluation (left side) and 

depiction of input/output relations for the Matlab/Simulink model of longitudinal vehicle dynamics behavior (right side).  
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4. Active Learning Implementation 

AL is an iterative learning method that trains ANNs on an iteratively extended labeled dataset by choosing the most 

informative examples from unlabeled data and prompting labeling feedback either from humans or newly generated data 

at runtime of the algorithm. Labeling in the presented application means, that sets of design parameters are scored in 

respect to fulfilment of the design goals by evaluating a scoring function based on the output of the simulation model and 

design goals. Furthermore, AL utilizes a score prediction by a trained ensemble of ANNs to identify the most informative 

candidates of design parameter to be scored and be added to the extended labeled dataset. In general, different algorithms 

exist to identify the most informative candidates of design parameters as e.g. evaluating the uncertainty of the predicted 

score and deriving necessity for ground truth because of high level of uncertainty in the prediction. For the presented 

procedure in this paper, it is important to recognize that AL might be a type of ML approach but is not necessarily 

associated with a high demand on existing data. It is rather the case, that the required learning data is drastically reduced 

by the AL algorithm so it can solely rely on actively prompting the most useful data from a single simulation model.  

Dependent on the concrete setup of the algorithm, modern AL architectures can be considered rather complex, although 

the concept of AL is already well-known since the early 1980s (Russell and Novig, 2021). Originally, AL was considered 

suitable to iteratively learn by querying feedback from a human teacher (Ren et al., 2020). According to RQ 2, in the case 

study not human feedback, but feedback from a simulation model representing human design knowledge is investigated 

in this publication. AL is a valuable approach nowadays, used in various applications where labeled data is scarce or 

expensive to obtain, since it is possible that the algorithm intelligently chooses the most informative instances for labeling, 

reducing the number of simulations in the case study. Since the mentioned ensemble of ANNs (see section 4.2), which 

predict scores and select the most informative design parameter combinations, is trained based on iteratively labeled data, 

the AL approach can be considered a supervised ML method. 

Because the overall AL architecture in the case study might be unfamiliar to readers, the following depiction is provided 

as overview and allocations to process steps from Figure 2 (right side) are provided. Furthermore, in the following 

subsections the architectural components of the AL approach are briefly described, including the utilized algorithm design. 

 

Figure 4. Architectural design of the AL algorithm to automate iterative parameter variation and simulation in design optimization. 

4.1 Pool Setup 

The algorithm operates on discretized parameters within the hyperdimensional design space. A selected design parameter 

combination of the sum of all possible design parameter combinations is potential input for the simulation model. The 

discretization is mainly defined by the parameters and constraints shown in Table 2, although it should be noted, that the 

discretization is performed very roughly (high step width) to reduce execution time of the AL approach for reasons of 

demonstration in this publication. This means that the presented AL approach can easily be adjusted to handle a finer step 

width for discretization in exchange for a significant higher computational effort and time consumption to solve the MOO 

problem. Moreover, it is worth mentioning that the lower and upper bounds for discretization as well as for the step width 

is selected based on estimations for the technical feasibility of design parameters for the considered vehicle concept.  
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Table 2. Discretization of the design space with lower bounds, upper bounds and step widths for design parameters. 

Design Parameter Lower Bound Upper Bound Step Width 

𝑖𝑎𝑥 3.00 5.50 0.250 

𝑟𝑡𝑟 0.20 0.40 0.100 

𝑖𝑔3 0.50 2.25 0.125 

𝑖𝑔4 0.50 2.25 0.125 

𝑖𝑔5 0.50 2.25 0.125 

By applying the discretization shown in Table 2, a total number of design parameter combinations of 54,880 within the 

hyperdimension can be defined. At this point, it must additionally be considered, that there is another constraint in the 

MOO, which is the monotonic order of gear ratios easily described by Equation (1). 

𝑖𝑔3 > 𝑖𝑔4 > 𝑖𝑔5    (1) 

Yet, the mentioned set of 54,880 design parameter combinations must be reduced by sets disregarding the constraint of 

monotonic gear ratio values. To address this, parameter combinations failing to meet the condition are removed from the 

initial pool, which leads to a reduced pool size of 7,280 design parameter combinations. This refined dataset constitutes 

the pool, which should be referred to as 𝑋𝑝𝑜𝑜𝑙 . Even if the pool size seems quite small, the approach for setup of 𝑋𝑝𝑜𝑜𝑙  can 

be applied to any constrained MOO problem since every constraint can be expressed as a logical formula that can be either 

satisfied or unsatisfied by parameter combinations. This greatly distinguishes the AL approach from a RL approach using 

a reward function to ensure that constraints on design parameters are met. Furthermore, it should be noted, that for the AL 

approach, constraints on the output parameters of the simulation model can be met by defining the scoring function 

accordingly (see section 4.3). In RL approaches both, the constraints on design parameters and output parameters of the 

simulation model, must be handled by the reward function so the design space is not reduced prior to optimization runs, 

potentially making RL less efficient for highly constrained MOOs. 

4.2 Ensemble Definition 

In past research, AL was already implemented for calibration of a model for diagnosis of breast cancer (Cevik et al., 2015). 

In the context of the AI use cases researched by the authors, this correlates to “automatized parameterization of simulation 

models”. Hence, this is out of scope for the research scope presented in section 1, which can be roughly condensed to the 

AI use case “solving Multi-Objective Optimization problems” and is therefore not investigated in this contribution. But 

although the application of AL for solving MOO problems was not considered in the publication of Cevik et al., the 

proposed framework for AL is adapted for the case study presented in this publication. Therefore, the pool-based AL 

algorithm should be enhanced by an ensemble of neural networks as proposed in the architecture in Figure 4 to enable the 

predicting of scores for design parameter combinations which can be expressed as a regression task: predicting a 

continuous scalar score based on continuous numeric input parameters. 

 

Figure 5. Base architecture for neural networks of the ensemble of the Active Learning approach. 

The ensemble, comprising a defined number of ANNs with similar neural architecture, should employ simple multi-layer 

perceptrons. In total five ANNs according to hyperparameters depicted in Figure 5 are utilized, meaning that the input 

layer consists of the same number of neurons as the quantity of design parameters and the output layer’s number of neurons 

is exactly one and suits the dimension of the scoring which is a scalar value. Furthermore, the ANNs contain two hidden 

layers with 16 neuron per hidden layer in which a ReLU activation function is utilized. The adam optimizer is selected for 

training with a learning rate λ = 0.01 for each ANN. To calculate the training loss the mean squared error (MSE) is applied 

and the ensemble is evaluated as a whole by using the mean absolute error (MAE). Each ANN is initialized with different 

weights and trained with distinct data, employing bootstrap aggregation (bagging). Additionally, it is important to state, 

that the evaluation dataset (𝐷𝐸) and training dataset (𝐷𝑇) are formed by random equally distributed sampling from the so 

far labeled dataset. For training of individual ANNs of the ensemble, 𝐷𝑇  is further divided into 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 , with 𝐷𝑡𝑒𝑠𝑡  

created by repeatedly drawing random samples with replacement from 𝐷𝑇  (bootstraps) as stated in Equation (2). 

𝐷𝑡𝑒𝑠𝑡 = 𝐷𝑇 − 𝐷𝑡𝑟𝑎𝑖𝑛    (2)  



NordDesign 2024 

As AL uses small datasets, the bagging method results in individual training datasets (𝐷𝑡𝑟𝑎𝑖𝑛,1, …, 𝐷𝑡𝑟𝑎𝑖𝑛,5), allowing data 

duplications during the sampling process and introducing bias, which impacts the trained ANNs in the ensemble. The final 

prediction is therefore derived from the mean value of individual biased predictions, often yielding higher accuracy than 

a single ANN network (Breiman, 1996). The evaluation dataset 𝐷𝐸  exploits overall ensemble performance by evaluating 

the final prediction, while 𝐷𝑡𝑒𝑠𝑡  assesses the performance of a single ANN within the ensemble during training. Since in 

the AL architecture according to Figure 4 K-Means is used for clustering, a default value of 𝐵 = 10 is used for the number 

of clusters. In addition, the size of the initial dataset is by default chosen as 𝐷𝑖𝑛𝑖𝑡 = 10. 

4.3 Scoring Method 

By varying the design parameters, the simulation model behaves differently with respect to the fuel consumption and the 

driving performance. Balancing the conflicting design goals of minimizing fuel consumption and maximizing driving 

performance requires a tradeoff, making the AL approach aim for a pareto-optimal solution and in need of a sophisticated 

scoring function. For the case study a so-called greedy approach for AL among various options for scoring a sample design 

parameter combination is chosen. The scoring method assesses a sample's quality with respect to the design goals. Using 

the greedy approach for the MOO, locally optimal choices at each epoch are chosen hoping to find a global optimum over 

time. This means, each epoch/iteration of the AL process, the greedy approach selects the best available option based on 

the scoring. Therefore, the scoring function must be able to determine the optimality of parameters within the solution 

space which is spanned by the possible value ranges of the design goal values (not to be confused with the design space). 

The used scoring method is primarily based on the euclidean distance, aiming to determine its global optimum. It is 

important to note, that the optimal system properties cannot be precisely estimated before performing the MOO, but it is 

not necessary for the scoring function to know the real global optimum. Instead, a roughly estimated optimum 𝑠∗ or rather 

a fictive optimum in the middle of the design goal ranges for the possible system properties can be selected for calculation 

of the euclidean distance. However, a drawback arises due to the uneven distribution of the design goal ranges, where 

different-sized intervals are defined by the individual design goals depicted in Table 3. 

Table 3. Minimum and maximum values for the design goal ranges to be optimized. 

Design Goal Hypothetic Minimum Hypothetic Maximum 

𝑓𝑐 1 1.7 

𝑒𝑙𝑔3 1 10 

𝑒𝑙𝑔4 1 10 

𝑒𝑙𝑔5 1 12 

The solution space, spanned by two design goal’s value ranges forms a rectangle. The issue lies in the euclidean distance 

scoring, which distributes scores radially. In the context of AL, a vector of the design variables  
𝑖𝑎𝑥, 𝑟𝑡𝑟,  𝑖𝑔3,  𝑖𝑔4,  𝑖𝑔5 is used for the design parameter combinations and the required scoring function must include the 

simulation model’s output to be able to clearly score and calculate possible domination of design parameters. With respect 

to the mentioned requirements, following scoring function can be defined: 

𝑓𝑠𝑐𝑜𝑟𝑒(𝑥) = 𝑓𝑠𝑐𝑜𝑟𝑒(𝑖𝑎𝑥 , 𝑟𝑡𝑟 , 𝑖𝑔3, 𝑖𝑔4, 𝑖𝑔5) =
1

‖𝑓𝑠𝑖𝑚(𝑥)−𝑠∗ ○  �̂�‖
    (3) 

and 

𝑓𝑠𝑐𝑜𝑟𝑒(𝑥) = 103 if 𝑓𝑠𝑖𝑚(𝑥) = 𝑠∗   (4) 

where ○ represents the element-wise product of two vectors, 𝑓𝑠𝑖𝑚 represents the result/output of the simulation, 

𝑠∗ = < 1.35;  5.5;  5.5;  6.5 >  and �̂� = < 0.7−1;  9−1; 9−1; 11−1 > 

4.4 Termination Criteria 

The termination criterion varies across concrete applications for AL. As an example (Saadallah et al., 2018) uses a fixed 

number of simulation calls and thus the sampled labeled dataset as termination criterion, neglecting the quality of the 

sampled dataset. This may lead to a suboptimal selection of design parameters. In the breast cancer detection application 

(Cevik et al., 2015), termination occurs after a fixed number of iterations without finding a solution, but this method suffers 

from potentially overlooking progress during the search in a low-scoring region. In contrast, an engine design application 

(Owoyele and Pal, 2020) employs two criteria, evaluating exploration and exploitation stagnation. This approach considers 

differences in sampled points and fitness value improvement. While the risk of early termination exists, it utilizes more 

information about search progress. Since the application of this paper is to present general feasibility of the AL approach   
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without optimizing runtime properties of the AL algorithm, a simple termination criterion is chosen. Therefore, a simple 

property of the AL algorithm should be used and so the termination criterion is set to 100 iterations. This also enables 

comparison of the performance for different hyperparameter configuration in later studies. 

4.5 Algorithm Design 

The AL algorithm aims to identify valuable design parameter combinations without simulating all design parameter 

combinations in the pool 𝑋𝑝𝑜𝑜𝑙 . It should be noted, that it wouldn’t be of value, if all possible combinations of design 

parameters in 𝑋𝑝𝑜𝑜𝑙  would need to be computed by the simulation model, because this would lead to the worst-case 

scenario in runtime, leading to a brute force exploration of the design space. To make efficient exploration of the design 

space possible, the ensemble is initially trained with a small randomly selected dataset 𝑋𝑖𝑛𝑖𝑡  from the pool 𝑋𝑝𝑜𝑜𝑙 . Therefore, 

a label must be assigned to the samples in 𝑋𝑖𝑛𝑖𝑡 . To do this, 𝑓𝑠𝑐𝑜𝑟𝑒 is evaluated by running the simulation model and the 

respective ground truth score is assigned as a label to the considered set of design parameter combinations 𝑋𝑖𝑛𝑖𝑡 . The 

sampled data is removed from the pool so that 𝑋𝑝𝑜𝑜𝑙  ← 𝑋𝑝𝑜𝑜𝑙  − 𝑋𝑖𝑛𝑖𝑡  holds after the initial training of the ensemble. 

After this initial training, the ensemble scans through the pool 𝑋𝑝𝑜𝑜𝑙  and determines for each instance 𝑥 ∈  𝑋𝑝𝑜𝑜𝑙 the 

predicted score  𝑓𝑠𝑐𝑜𝑟𝑒(𝑥) = �̂�. Subsequently, the samples in 𝑋𝑝𝑜𝑜𝑙  are ranked in descending order by �̂� and the best 80 

instances are used for a clustering procedure as proposed by Cevik et al. (Cevik et al., 2015). For the clustering a K-Means 

algorithm is used, where K depicts the number of clusters, which is chosen to be 10 based on several experiments. From 

each cluster, the best sample 𝑥𝑖 with the highest score �̂� is selected. In addition, a constant number 𝑐𝑟𝑎𝑛𝑑 of randomly 

drawn samples 𝑋𝑟𝑎𝑛𝑑 is determined and added to a sampled set. For the sampled set {𝑥1, … , 𝑥𝐾} ⋃ 𝑋𝑟𝑎𝑛𝑑 , the true score 𝑦 

is determined by evaluating 𝑓𝑠𝑐𝑜𝑟𝑒, which means the simulation is run for the whole sampled set and the true scores are 

calculated by utilization of the score function. The true scores are then assigned as labels to the individuals of the sampled 

set and the labeled design parameter combinations are then added to the training data. The sampled data are furthermore 

removed from the pool 𝑋𝑝𝑜𝑜𝑙  in this process. Finally, a new iteration of the AL algorithm begins, starting with re-training 

the ensemble on the extended training dataset. A limit of simulation calls is set as a termination criterion for the greedy 

algorithm as described above, also meaning that the algorithm ends as soon as the number of labeled data exceeds 𝐷𝑚𝑎𝑥. 

The whole algorithm is additionally depicted as pseudocode in Figure 6. (Stuppy, 2023) 

 

Figure 6. Pseudocode of the implemented greedy Active Learning approach. 

5. Exemplary Results 

To evaluate the results of the presented AL approach for solving the described MOO problem, the metric is defined as 

number of valid solutions for the case study. A solution or combination of design parameters is considered valid, if it 

fulfils certain constraints regarding the design goals, which are not presented in this paper for the sake of clarity and 

conciseness. Therefore, to be more specific regarding the metric, the cumulative number of valid solutions per iteration 

was considered over the termination criteria of 100 iterations. In addition, the algorithm was tested with 10 different seeds, 

as there are many stochastic elements in the algorithm that can influence performance. Preselection of seeds allows 

reproducible of the following statistical influence which are not an exhausting list, but rather examples of main influences:  
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- the random division of the data into training and test dataset 

- the random determination of the initial dataset that is labeled 

- the initialization of the weights of the neural networks 

The cumulative number of valid design parameter solution combinations found, both evaluating the average and the 

median, was used as the measure for evaluation across the execution of the ten seeds. Furthermore, the AL architecture 

and algorithm was tested with several sets of hyperparameters, although it could be observed that the results were quite 

similar in performance, even when the hyperparameters of the ANNs in the ensemble were varied in a meaningful way. 

Nevertheless, the best hyperparameters were selected for the following presentation of results and are chosen as depicted 

in section 4.2. Finally Figure 7 shows the results with (left) and without (right) K-Means clustering as an intermediate step 

in the AL architecture according to Figure 4. It can be observed that there is little difference when utilizing the clustering. 

In conclusion, clustering can therefore also be omitted to gain more performance regarding computational effort. 

  

Figure 7. Depiction of found valid solutions with AL for optimal combinations of design parameters 

(left: with clustering; right: without clustering; colors depict results for different seeds). 

While Figure 7 is just presenting the number of valid solutions per run of the AL algorithm for different seeds, Table 4 

shows what the concrete solutions look like. The solutions are presented for the AL architecture without the additional 

application of the K-means clustering and consists of the found combinations of design parameters, the corresponding 

values of the design goal variables determined by the simulation model and the result of the scoring function. In summary, 

it can be stated, that the solutions for the MOO problem found by the AL approach are feasible designs on the pareto front. 

Table 4. System properties and design parameters for AI generated system designs. 

𝑖𝑔3 𝑖𝑔4 𝑖𝑔5 𝑖𝑎𝑥 𝑟𝑡𝑟 𝑓𝑐 𝑒𝑙𝑔3 𝑒𝑙𝑔4 𝑒𝑙𝑔5 𝑓𝑠𝑐𝑜𝑟𝑒 

2.00 1.75 1.50 3.00 0.25 1.610783 6.60 8.69 11.83 0.717039 

2.00 1.75 1.50 4.25 0.35 1.621922 6.43 8.49 11.55 0.694777 

1.75 1.50 1.25 3.00 0.20 1.692209 5.44 7.56 10.90 0.671883 

2.00 1.75 1.50 3.75 0.30 1.650784 6.03 8.01 10.90 0.652596 

2.00 1.75 1.50 4.50 0.35 1.681201 5.68 7.56 10.31 0.629780 

2.00 1.75 1.50 3.25 0.25 1.693895 5.55 7.39 10.08 0.625624 

6. Conclusion & Future Work 

In conclusion, the effective application of Machine Learning (ML), especially Active Learning (AL), for Multi-Objective 

Optimization (MOO) problems in design optimization is based on meeting prerequisites. Once these criteria are fulfilled, 

the applicability of ML to design optimization is possible. The most essential requirements include: 

- Knowledge of possible value ranges for design parameters to be chosen 

- Definition of target ranges for design goals, which indicates valid solution of the design problem 

- Establishment of a scoring function to be embedded in the Active Learning approach  
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Considering the second research question (RQ 2) from section 1 it can be stated that AL notably facilitates the 

straightforward consideration of design constraints in MOOs. Therefore, Constrained MOO problems can be assisted by 

AL. With respect to the aspect of integration of design knowledge from simulation models with ML it can be stated clearly 

and explicitly that combination is possible and leads to significant possibilities to automate different activities in design 

optimization. The presented AL architecture in this paper provides a first answer how this can be implemented in technical 

means and therefore answers RQ 2. It should be mentioned that only the AL approach is investigated in this paper and 

conclusions are not transferable to other types of ML approaches as e.g. constraints are not always supported natively by 

different ML algorithms. This will be further investigated in future work and a metric will be developed to classify 

suitability of ML algorithms for Constrained MOOs and additional algorithms will be implemented. 

With respect to the first research question (RQ 1) and limited to the investigated case study, it can be said, that design 

optimization of competing design goals or rather system properties is possible by application of ML. In the case study a 

complex and non-linear system was the object of investigation and ML or at least AL can be considered a possibility to 

automatically explore design spaces if specific conditions of the design space hold. As part of additional questions for 

future work, exploring transfer learning methodologies is identified as a promising avenue for further enhancing the 

capabilities of AL in the context of design optimization. This approach has the potential to leverage knowledge gained 

from one optimization task to improve the efficiency and effectiveness of applications with certain level of similarity. 
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