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Abstract: In today's market, product development faces challenges such as customization demands and shortened life 

cycles. To address these, companies adopt product development in generations, aiming for reuse to reduce time and 

costs. However, escalating product portfolios lead to opacity and increased variation, hampering effective reuse. This 

paper proposes leveraging AI, particularly deep learning, to address unnecessary variation creation and lack of 

transparency. This paper investigates a deep learning methodology, UV-Net, which converts CAD solids into tensors 

for processing, facilitating classification and retrieval tasks. Experimental results, based on self-supervised learning with 

the Fusion 360 dataset, highlight AI's potential in categorizing and retrieving CAD designs. While showing promising 

performance, challenges persist with complex shapes and imbalanced datasets. We discuss integrating cost 

considerations and future research avenues for a comprehensive AI-driven design assistance system, facilitating 

improved decision-making in product development. 

Keywords: Artificial Intelligence (AI), Computer Aided Design (CAD), Information Retrieval, Geometric Feature 
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1 Introduction 

In the modern market environment, companies are faced with many challenges regarding product development. Demands 

for customized solutions, shorter product life cycles, regulatory changes, and many other factors force companies to 

develop new products or product variants in a short period of time and at a low cost. 

To handle these challenges many companies, turn to developing products in generations where a large part of the product 

can be reused in subsequent generations. As subsystems in the product can be reused, the development effort is reduced 

and both time and money are saved in the process (Albers et al., 2018, 2017). However, as the product offerings grow to 

keep up with market demands, product portfolios become increasingly less transparent, and the reuse of parts and 

subsystems becomes increasingly difficult. Instead of reusing parts, new variants are created, leading to unnecessary 

variation and increased costs (Hvam et al., 2019). 

To address unnecessary variation creation the lack of transparency should be addressed. With Artificial Intelligence (AI), 

or more specifically through deep learning and machine learning methods, parts can be retrieved based on their geometric 

properties such as shapes, volume, and surface area. Such an AI system would be able to give design engineers suggestions 

as they create new parts for products (Krahe et al., 2022). This would reduce part variety and, more importantly, reduce 

development efforts and internal complexity in the company resulting in many benefits throughout the value chain (Greve 

and Krause, 2019).  

An AI-based approach makes it possible to create a design system with some degree of automation, which otherwise would 

have been an immense task to fulfill due to the inconsistency and size of product databases in the mechanical engineering 

industry (Krahe et al., 2020b) As a result, higher costs when developing new product designs can potentially be avoided 

by reducing unnecessary part variant creation, e.g., by reusing existing parts and components from the part databases (Bai 

et al., 2010; Krahe et al., 2022; Rea et al., 2002). The time-to-market for new products can be reduced through automation 

of time-consuming routine tasks (Krahe et al., 2020a; Machalica and Matyjewski, 2019). Furthermore, suggesting existing 

solutions to the designer, which already contain product requirements, during the design process will reduce the effort of 

knowledge transfer between designers (Krahe et al., 2020a). Additionally, retaining the implicit experience and knowledge 

by reusing the existing CAD model (Computer Aided Design) ensures less risk of errors in production (Krahe et al., 2020b; 

Machalica and Matyjewski, 2019). 

Classification of semi-finished components has also been suggested as means of optimizing the design process. By 

suggesting first drafts of existing similar CAD models, proposing the next design steps, and offering several alternative 

design options, it could enable the designer to explore the solution space more optimally. Thus, the designer is not limited 

to only making adaptations to existing products (Krahe et al., 2020b). Designing or customizing new products depends on 
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the experience and creativity of engineers and designers. When different requirements between product generations and/or 

variants are automated, a revision of specifications and manual adaptation of CAD models to the corresponding standards 

will be eased (Krahe et al., 2020a). Deep Artificial Neural Network allows for the transferability of the method to new 

data, other product families, or different engineering domains by transfer learning or re-training. This would provide an 

enormous advantage in terms of generalization and scaling for efficient product design (Krahe et al., 2020a), and support 

designers with a design assistance system based on the design patterns from multiple classes of components and their CAD 

Model Tree (Krahe et al., 2021). 

In this paper, we show how AI can benefit the designer in this regard by reviewing previous works focused on retrieval 

and classification methodologies, and by testing an existing state-of-the-art deep learning methodology, which is evaluated 

on a benchmark dataset, Fusion 360 dataset (Lambourne et al., 2021), Representation learning is used, converting the 

boundary representation (B-Rep) from the CAD files into tensors, processable by the AI.  Lastly the article takes up 

important topics of discussion derived from the results in relation to the literature and possible additions to the 

methodology before elaborating on future research areas. 

2 State of the Art 

New developments in geometric deep learning, utilizing Boundary Representations (B-Reps), aim to enhance the level of 

automation in the CAD process (Heidari and Iosifidis, 2024). Various automation objectives have been explored, including 

reconstructing CAD models (Wu et al., 2021; Zhou et al., 2023), identifying interfaces for automatic mating in assembly 

models (Jones et al., 2021; Willis et al., 2022) , and transforming sketches, including hand-drawn sketches, into CAD 

models (Li et al., 2022; Seff et al., 2020). These automation processes leverage expert knowledge while alleviating them 

of repetitive and time-consuming tasks (Heidari and Iosifidis, 2024; Krahe et al., 2020b). By analyzing historical design 

data, geometric features can be extracted, and similarity analysis conducted across the CAD library (Heidari and Iosifidis, 

2024), facilitating the identification and reduction of unnecessary or non-value-adding variations. Additionally, this 

approach increases the potential for reusing past designs in new products, thereby assisting designers and organizations in 

saving both time and money.  

The design process is usually considered a highly individualized procedure with no strict definitions and is commonly 

based on the experience of the individual engineer (Krahe et al., 2020b). With proper retrieval and classification models 

it should be possible to increase reuse between product generations and across product programs (Bai et al., 2010) . Thus, 

a larger part of the experience from seasoned designers can be utilized by others and parts of the design process may 

automated inducing various benefits for the organization as mentioned earlier.  

Different methods for classification and retrieval are described in the literature, and these have different variations in order 

to address different problems. However, four methodologies appear to recur consistently across the literature, mainly 

being: Point clouds, voxels, meshes, and multi-view images. These methods are elaborated in the following paragraphs: 

Point clouds have been used by Krahe et al., 2022, where a cloud of points with a random distribution covers the volume 

or surface of a CAD model to extract geometric information to group and classify parts accordingly. However, according 

to Jayaraman et al., 2020 point clouds may overlook important details in the product due to their random distribution and 

may need to be excessively dense in order to capture them. Krahe et al., 2022, also report issues with detecting specific 

geometric details such as small flaps on flanges. 

In a similar fashion Zhou et al., 2023 argue that common voxel grids, where a cube-shaped grid is used to approximate 

the object, will have lower levels of detail compared to B-Reps. Jayaraman et al., 2020 argue that voxels may be able to 

capture the small details of B-Reps in a CAD model by using convolutional neural networks (CNNs). However, there are 

limits to how high the resolution on the voxel grid can be before the cost of computing power and memory use is too high 

(Jayaraman et al., 2021; Kim, 2023). 

Commonly, meshes are used for visualizations and, therefore, contain geometry and appearance attributes. The meshes 

are structured in unorganized triangles and are, therefore, commonly not watertight (enclosing the entire volume of the 

CAD model) (Tangelder and Veltkamp, 2008). As mentioned with the previous methods it is important to be able to 

capture distinct details of the product design, which means that the mesh around the CAD model should be watertight. 

This is possible with complex procedures or tight constraints on several factors, but many authors report problems, 

especially with large high-resolution meshes, in regard to memory usage, quality, and processing time (Geuzaine and 

Remacle, 2009; Jayaraman et al., 2021; Tangelder and Veltkamp, 2008; Vidanes et al., 2024). 

Krahe et al., 2020 use a multi-view approach, where several pictures from different angles and perspectives are used to 

gather geometric information of the CAD model. CNNs then calculate the probability of which class the object belongs to 

and assign it to the one with the highest probability. Multi-view approaches have shown decent results in regard to the 

classification of parts. Both Krahe et al., 2019 and Su et al., 2015 reach accuracies close to 90 %, although some 
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shortcomings are apparent, as Krahe’s model wrongly categorized 18% of desks as sofas. Furthermore, Jayaraman et al., 

2020 argue that because of the numerous entities in a B-Rep, multi-view images are not expressive enough and have 

limited application. 

From the review of the literature on these four methodologies, it becomes apparent that there is a need for a method that 

can capture the fine details of CAD models, without becoming too costly in regard to computing and memory usage. 

Neither should it become overly complex with extensive add-ons or workarounds, as that will also affect performance and 

memory use. Jayaraman et al., 2020 have developed a method called UV-Net, which promises such characteristics. This 

paper tests this method on the Fusion 360 dataset (Lambourne et al., 2021) consisting of mechanical CAD designs and 

will be described in detail in the following section. 

3 Methodology 

As mentioned earlier, the input to deep learning models is in the form of structured numbers, such as vectors, matrices, 

and tensors. On the other hand, CAD solids are often stored in files in the B-Rep format, for instance, the STEP file format 

stores solids in several lines of human-readable text, where each line defines an entity such as a surface, curve, or a 

description of the relationship between entities (Mandelli and Berretti, 2022). Therefore, in order to process CAD solids 

with deep learning, they first need to be converted from B-Rep into tensors. This process is called representation learning. 

Several approaches for CAD representation learning exist. For instance, UV-Net (Jayaraman et al., 2021) starts by creating 

a face-adjacency graph from the boundary representation, where each node represents a surface in the solid, and there is 

an edge between two nodes if their corresponding surfaces share a curve in their boundary. The information regarding the 

details of each surface and curve is stored in a 64-dimensional vector in the corresponding node or edge in the graph. To 

compute this information, the 3D surface is mapped into a 2D texture (image) by sampling from the surface. This map is 

called a UV-grid. Similarly, the 3D curves are mapped into a 1D UV-grid. Subsequently, these UV-grids are processed 

using a few convolutional layers in order to obtain the 64-dimensional vector. 

Convolutional layers are fundamental building blocks in CNNs, which are a class of deep learning models commonly used 

for processing images. Convolutional layers utilize the convolution operation, which is a mathematical operation that 

combines two functions to produce a third function. In CNNs, this operation involves sliding a small window called a 

filter or kernel over the input data and performing element-wise multiplication between the filter and the overlapping input 

data, then summing up the results. 

After a 64-dimensional vector for each node and edge in the face-adjacency graph is obtained, the graph is processed using 

graph neural networks (GNNs). Similar to convolutional neural networks that combine information in each local 

neighborhood of pixels, graph neural networks combine the information of adjacent nodes and edges in each layer using 

a message passing mechanism. After the face-adjacency graph is processed with a GNN, the resulting vectors for all nodes, 

called node embeddings, are all combined using a pooling operation in order to obtain a single vector that represents the 

entire graph and thus solid, called a shape embedding. This shape embedding can then be further processed for particular 

tasks such as classification, where the goal is to classify what type of object the CAD model represents, for instance, a 

bolt, a nail, or a screw. 

We conducted a series of experiments to assess the effectiveness of UV-Net in categorizing and retrieving mechanical 

CAD designs. Our focus centered on training the UV-Net model in a self-supervised manner using the Fusion 360 dataset 

(Lambourne et al., 2021), comprised of 35,680 CAD models sourced from designs uploaded to the Autodesk Fusion 360 

Online Gallery. Each CAD model in this dataset comes annotated for surface segmentation. Notably, the training process 

avoids annotations, relying instead on self-supervision generated through graph transformations to create positive pairs 

for contrastive learning. 

Following UV-Net's analytical results and experimental setup, three distinct types of graph transformations are employed: 

Connected-patch, drop-node, drop-edge, and identity-transform. In connected-patch, a random node with its n-hop 

neighbors was selected as a subgraph, forming the positive pair of the graph. Drop-node and drop-edge randomly deleted 

nodes and edges from the graph, respectively, with a dropout probability of 0.4. In identity-transform, no graph 

transformation occurred, allowing the model to occasionally retain the original features of the graph itself. 

UV-Net initially trained its model on a toy dataset called SolidLetters (Jayaraman et al., 2021), an annotated CAD data 

featuring alphabets in various fonts, for the purpose of evaluating retrieval performance using available annotations. 

Despite this pre-trained model being applied to Fusion 360 datasets, our attempts to replicate their results revealed a lack 

of generalization from the SolidLetters dataset to the Fusion 360 dataset. This discrepancy appears logical given the 

dissimilarity in object types between the two datasets, and the geometric features captured in SolidLetters may not 

adequately encompass the complexities present in a dataset comprised of mechanical objects. To address this challenge, 
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we opted to train the model from scratch on the Fusion360 dataset and conducted retrieval tasks on the same dataset using 

the pre-trained model. 

4 Results 

Our training approach closely followed UV-Net's experimental setup. The model hyperparameters are all optimized by 

training the model in a supervised manner on SolidLetters dataset and evaluating the model performance. The optimized 

hyperparameters such as number of neural network layers, dimensions, etc. are then used for training the model on 

Fusion360 dataset in a self-supervised manner. Figure 1 depicts the algorithm's learning curve, showcasing loss 

degradation on both training and validation (test) data. While quantitative metrics like accuracy were not applicable due 

to the absence of annotations in the dataset, qualitative results obtained through visualization were employed to analyze 

performance. Subsequently, retrieval was performed on the test set of datasets. The initial step involves inputting the test 

CAD samples into the pre-trained model to collect their feature embeddings as the output. These feature embeddings, 

generated by the model's encoder, were then utilized to compute the k nearest neighbors of a query sample among all the 

test shape embeddings, using the Euclidean distance metric. 

 

Figure 1: Loss degradation observed in both training and test data during the self-supervised training process illustrates the learning 

curve of the model. 

Figure. 2 illustrates some example retrieval results. Notably, the model exhibits seamless performance for simple 

geometric shapes (rows 4, 5, 8) while encountering challenges with more complex shapes (rows 2, 9). The reason can be 

clarified through various factors, including an imbalance in data, lack of diversity within the dataset, or insufficiently 

intricate graph transformations. Although benchmark datasets like Fusion360 primarily contain geometrically simple 

samples, the model's capability to swiftly identify diverse design options in the initial stages of the design process can 

significantly save time for designers. 
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Figure 2: Retrieval results are obtained from the Fusion 360 Segmentation dataset, where six nearest neighbors are retrieved for each 

query sample. 

5 Discussion 

This work marks the commencement of our efforts to integrate AI algorithms into CAD design processes within industrial 

settings. Our next step involves generalizing this self-supervised method to datasets obtained from industrial partners. 

Depending on the dataset's characteristics, size, and complexity, we may need to fine-tune the model or train it from 

scratch. To assess the method's robustness and retrieval performance in real-world scenarios, annotating a portion of the 

dataset for use as a test set may be necessary. However, given the impracticality of annotating large datasets, our best 

practice involves adapting self-supervised methods to capture the intricate variations in CAD models used in industrial 

applications. As presented in the introduction, the benefits of realizing this potential could be immense when it comes to 

improving design engineers' product development process. Using boundary representation learning, as shown in this study, 

supports the above-mentioned opportunities for designers in regard to the retrieval and classification of existing parts. E.g., 

identifying identical simple CAD parts. Even results only on a qualitative level can support the decision-making of design 

engineers when it comes to reusing existing parts and retaining implicit experience-knowledge, as will be explored, and 

discussed in the following sections. 

Although qualitative assessments may have some applicability, it leaves evaluation of the method’s accuracy more open 

to interpretation. However, as mentioned, the model shows decent results on simple geometries, which is supported by the 

improvement of the algorithm’s learning curve, but struggles with more complex parts as can be assessed in Figure 2. 

Generally, the results in this study leave room for improvement. If designers want to use this code to find an exact match 

for a specific set of specifications, be it measurements, materials, or others, they may be unsatisfied with the results. In 

that regard, it may not yet be the most optimal search engine to input into a PLM system, for instance. In addition, if the 

designer is conducting a part variance analysis, and needs to find all parts of a certain category in order to design a new 

standard component or conduct product program maintenance (technical updates, regulatory updates, etc.), then a high 

level of accuracy may not be necessary. Furthermore, if such an analysis were to be carried out on a higher level such as 

subassemblies or modules, the geometric similarity between systems may vary even more. In such a scenario other or 

additional inputs might be required to retrieve the correct samples, such as functionalities or features. However, the results 

of the method found in this study indicate the possibility of AI retrieval being used as a supporting tool in the design phase. 
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In terms of unnecessary variation creation, it could be imagined that the AI is integrated with the CAD-, PLM-, and ERP 

system. As the designer is creating a new part, the AI should then be able to recognize it, and based on the collection of 

components in the centralized database, suggest parts that already exist, which is already possible with simple geometries 

as shown in this paper. To give the designer the proper decision support, it would need to also present different kinds of 

information, such as tolerances, material specifications, measurements, and also which products the part already exists in, 

and its interrelation with other parts i.e. interfaces (Jones et al., 2021; Willis et al., 2022). Additionally, the cost of the part 

should be shown. In order to truly minimize unnecessary variation, it is not enough to only show the direct cost. A large 

part of overhead costs comes from increased product- or part complexity, and these should be taken into account, since 

direct cost will in most cases not encourage reuse (Ripperda and Krause, 2017). However, one should keep in mind that 

there must also be measures for when not to use the existing parts. An obvious one could be if there is no match for the 

specifications given. Another could be strategic considerations, though these should come from management and not the 

AI. 

An additional challenge that may arise in real-world scenarios is imbalanced datasets, where there is a disproportionate 

distribution of samples in the repository. As observed in the visualized results, certain sample types may outnumber others. 

To address this, we propose setting a threshold, denoted as x, so that the model only retrieves neighbors with distances 

less than x during the retrieval process. Nevertheless, determining an optimal threshold value depends on various factors 

such as the distance metric and feature values. A more comprehensive solution involves balancing the dataset through data 

augmentation or similar techniques, a subject we plan to explore in our future work. 

The result and discussion of this study brought to light several research topics that can be further developed in a new study. 

The self-supervised method should be tested and trained on datasets obtained from industrial partners and also document 

the observed benefits for designers using the trained algorithm as a step in their decision-making process. Especially the 

interrelation between the design engineers' decision-making and the application of machine learning algorithms as a tool 

to improve product solutions would be beneficial. Identifying not only the general application areas in the industry but 

also in small, medium, or large-scale enterprises could prove to reveal different answers. 

Specifically, retrieving and classifying CAD models might help reuse of existing parts. However, it will not, at its current 

state, be able to assess the implications of choosing one solution over another. Optimally, a machine learning algorithm 

will be trained on, for example, the most cost-efficient design as suggested by Krahe et al., 2022. Yet coupling CAD 

models with cost data, not only considering direct cost but also including the indirect costs incurred throughout the product 

life cycle, is yet to be seen (Greve et al., 2022). Connecting these research areas will provide the circumstance on which 

design engineers can assess the most cost-optimal design and support them as a functional tool in their decision-making 

during product development. 

6 Conclusion 

The study presented in this paper was performed in order to expand upon the use of AI methods to support design engineers' 

decision-making in product development. The method used in this paper is called UV-net and was developed by Jayaraman 

et al., 2020. It was tested on a benchmark dataset without annotations. The state of the art has been explored and argues 

why this method may be particularly interesting to test and develop further. 

The results of this study indicate the applicability of AI when it comes to supporting engineers within mechanical design. 

AI can be used for the retrieval of mechanical parts in CAD format, improving reuse of existing parts and avoiding 

spending unnecessary resources on developing existing parts and variants. Thus, reducing unnecessary product- and part-

variety creation while improving product portfolio transparency. 

Due to a lack of annotations in the benchmark dataset, the results are evaluated qualitatively through visualizations.  The 

results showed that the method works well on simple part geometries but struggles with more complex shapes and systems. 

Factors such as, imbalanced data, lack of diversity, or insufficiently intricate graph transformation may explain this 

tendency, and need to be developed further before implementation is feasible. Furthermore, qualitative evaluation makes 

it difficult to determine accuracy precisely, but accuracy needs may vary depending on the application and require varying 

resources for a fully developed model. This underlines the necessity of a well-defined scope and specification of a model’s 

application area.  

The different potential applications of an AI tool supporting the design process have been discussed in relation to the 

literature and the obtained results obtaining the demand both in terms of input data and accuracy. Moreover, it was found 

that additions to the model in the form of parameters and features, such as cost, would increase the applicability of the 

model for designers. In order to truly address the issues of creating product variation in the product program or to 

encourage the reuse of parts, indirect costs together with direct costs need to be part of the evaluation of design solutions. 

The discussion of this paper concludes that such additions and modifications should be investigated further in future 

research projects in order to truly address unnecessary variation creation and to create the most value for industry uses. 
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